Robust Subgroup Analysis of High Dimensional Data

Chao Cheng Author: Chao Cheng, Xingdong Feng

School of Statistics and Management Shanghai University of Finance and Economics

December 11, 2019

December 11, 2019 1/48

Introduction

3 Statistical Properties

4 Simulation

< 17 ▶

- Heterogeneity is widely presented in practice, precision medicine, the Iris Dataset, etc.
- Subgroup analysis can be done as a means of investigating heterogeneous results.
 - Based on observed attributes: clinical analysis
 - Explore the latent subgroups:
 - mixture model
 - penalty method

.

Consider the following model

$$\mathbf{y}_i = \mu_i + \mathbf{x}_i^T \boldsymbol{\beta} + \varepsilon_i, \qquad i = 1, 2, \cdots, n,$$
 (1)

where β is a *p*-dimensional vector.

• Heterogeneous treatment effect: There is a partition $G_0 = \{G_1, \cdots, G_{K_0}\}$ of $\{1, \cdots, n\}$, such that

$$\mu_i = \alpha_k$$
, for all $i \in G_k$.

Therefore α_k is the common value for subgroup G_k .

Sparse covariate effect in high dimension:
 Only the first *q* entries of β are non-zero, where *q* ≪ *n*.

We propose a penalized M-estimator for subgroup analysis and variable selection simulteneously.

$$\left(\hat{\boldsymbol{\mu}},\hat{\boldsymbol{\beta}}\right) = \operatorname*{arg\,min}_{\boldsymbol{\mu},\boldsymbol{\beta}} \frac{1}{n} \sum_{i=1}^{n} \rho\left(\boldsymbol{y}_{i} - \boldsymbol{\mu}_{i} - \boldsymbol{x}_{i}^{T}\boldsymbol{\beta}\right) + \sum_{1 \leq i < j \leq n} P_{\lambda_{1}}\left(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}\right) + \sum_{j=1}^{p} P_{\lambda_{2}}\left(\boldsymbol{\beta}_{j}\right), \quad (2)$$

where ρ is a loss function and P_{λ_1} and P_{λ_2} are two penalties with parameters λ_1 and λ_2 respectively.

- $E\psi(\varepsilon) = 0$ where ψ is the derivative of ρ .
- ρ is differentiable except at finite number of points.
- $L_1: \rho(x) = |x|.$
- $L_2: \rho(x) = x^2.$
- Huber:

$$ho\left(x;c
ight)= egin{cases} rac{1}{2}x^2 & |x|\leq c\ c\,|x|-rac{1}{2}c^2 & |x|>c, \end{cases}$$

where c is a positive constant.

• Quantile regression: $\rho(x; \tau) = x(\tau - 1_{x < 0})$, where $\tau \in (0, 1)$.

B > 4 B >

A D M A A A M M

$$\mathcal{P}_{\lambda,\gamma}'(x) = \lambda \left\{ I(x \leq \lambda) + rac{(\gamma \lambda - x)_+}{(\gamma - 1)\lambda} I(x > \lambda)
ight\}, \quad x > 0, \quad \gamma > 2.$$

$$\mathcal{P}_{\lambda,\gamma}'\left(x
ight)=\lambda\left(1-rac{x}{\lambda\gamma}
ight)_{+},\quad x>0,\quad \gamma>1.$$

æ

イロト イヨト イヨト イヨト

We can rewrite the objective function in (2) to a optimization form:

$$\min \frac{1}{n} \sum_{i=1}^{n} \rho(z_i) + \sum_{1 \le i < j \le n} P_{\lambda_1}(s_{ij}) + \sum_{j=1}^{p} P_{\lambda_2}(w_j)$$

s.t.
$$\begin{cases} \boldsymbol{z} = \boldsymbol{y} - \boldsymbol{\mu} - \boldsymbol{X}\boldsymbol{\beta} \\ \boldsymbol{s} = \boldsymbol{D}\boldsymbol{\mu} \\ \boldsymbol{w} = \boldsymbol{\beta} \end{cases}$$
 (3)

where **D** is the $\frac{n(n-1)}{2} \times n$ pairwise difference matrix, hence $s_{ij} = \mu_i - \mu_j$.

The augmented lagrangian form of (3) is

$$L(\beta, \mu, \mathbf{z}, \mathbf{s}, \mathbf{w}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}) = \frac{1}{n} \sum_{i=1}^{n} \rho(z_{i}) + \sum_{1 \le i < j \le n} P_{\lambda_{1}}(s_{ij}) + \sum_{j=1}^{p} P_{\lambda_{2}}(w_{j}) + \frac{r_{1}}{2} \|\mathbf{y} - \mu - \mathbf{X}\beta - \mathbf{z}\|_{2}^{2} + \frac{r_{2}}{2} \|\mathbf{D}\mu - \mathbf{s}\|_{2}^{2} + \frac{r_{3}}{2} \|\beta - \mathbf{w}\|_{2}^{2} + \langle \mathbf{y} - \mu - \mathbf{X}\beta - \mathbf{z}, \mathbf{q}_{1} \rangle + \langle \mathbf{D}\mu - \mathbf{s}, \mathbf{q}_{2} \rangle + \langle \beta - \mathbf{w}, \mathbf{q}_{3} \rangle,$$
(4)

where r_1 , r_2 and r_3 are positive constants, \boldsymbol{q}_1 , \boldsymbol{q}_2 and \boldsymbol{q}_3 are multiplier vectors. $\|\boldsymbol{a}\|_2 = \sqrt{\boldsymbol{a}^T \boldsymbol{a}}$ and $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \boldsymbol{a}^T \boldsymbol{b}$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The augmented lagrangian form

$$\begin{split} & L(\beta, \mu, \boldsymbol{z}, \boldsymbol{s}, \boldsymbol{w}, \boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3) \\ = & \frac{1}{n} \sum_{i=1}^n \rho(\boldsymbol{z}_i) + \sum_{1 \le i < j \le n} P_{\lambda_1}\left(\boldsymbol{s}_{ij}\right) + \sum_{j=1}^p P_{\lambda_2}\left(\boldsymbol{w}_j\right) \\ & + \frac{r_1}{2} \|\boldsymbol{y} - \boldsymbol{\mu} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{z}\|_2^2 + \frac{r_2}{2} \|\boldsymbol{D}\boldsymbol{\mu} - \boldsymbol{s}\|_2^2 + \frac{r_3}{2} \|\boldsymbol{\beta} - \boldsymbol{w}\|_2^2 \\ & + \langle \boldsymbol{y} - \boldsymbol{\mu} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{z}, \boldsymbol{q}_1 \rangle + \langle \boldsymbol{D}\boldsymbol{\mu} - \boldsymbol{s}, \boldsymbol{q}_2 \rangle + \langle \boldsymbol{\beta} - \boldsymbol{w}, \boldsymbol{q}_3 \rangle \,. \end{split}$$

• *L* is quadratic in $(\mu^T, \beta^T)^T$.

- *L* is convex in *z*, *s* and *w* when r_1 , r_2 , r_3 are properly chosen.
- *L* has the form of independent summation in *z*, *s* and *w* when others are given.

We solve (4) in a coordinate descent fashion. For a given $\left(\beta^{(k)}, \mu^{(k)}, \mathbf{z}^{(k)}, \mathbf{s}^{(k)}, \mathbf{w}^{(k)}, \mathbf{q}_1^{(k)}, \mathbf{q}_2^{(k)}, \mathbf{q}_3^{(k)}\right)$ at step *k*. The update at step *k* + 1 is given by:

•
$$\beta^{(k+1)} = \underset{\beta}{\operatorname{argmin}} L\left(\beta, \mu^{(k)}, \boldsymbol{z}^{(k)}, \boldsymbol{s}^{(k)}, \boldsymbol{w}^{(k)}, \boldsymbol{q}_{1}^{(k)}, \boldsymbol{q}_{2}^{(k)}, \boldsymbol{q}_{3}^{(k)}\right)$$
:
If $p \leq n$, then

$$\boldsymbol{\beta}^{(k+1)} = \left(\boldsymbol{r}_1 \boldsymbol{X}^T \boldsymbol{X} + \boldsymbol{r}_3 \boldsymbol{I}_p \right)^{-1} \boldsymbol{d}_1^{(k)}.$$

If p > n, then

$$\beta^{(k+1)} = \frac{1}{r_3} \left\{ I_p - r_1 X^T \left(r_1 X X^T + r_3 I_n \right)^{-1} X \right\} d_1^{(k)},$$

where $d_1^{(k)} = r_1 X^T \left(y - \mu^{(k)} - z^{(k)} \right) + r_3 w^{(k)} + X^T q_1^{(k)} - q_3^{(k)}.$

•
$$\mu^{(k+1)} = \underset{\mu}{\operatorname{argmin}} L\left(\beta^{(k+1)}, \mu, \mathbf{z}^{(k)}, \mathbf{s}^{(k)}, \mathbf{w}^{(k)}, \mathbf{q}_{1}^{(k)}, \mathbf{q}_{2}^{(k)}, \mathbf{q}_{3}^{(k)}\right)$$
:
 $\mu = \left(r_{1}I_{n} + r_{2}\mathbf{D}^{T}\mathbf{D}\right)^{-1}\mathbf{d}_{2}^{(k)},$
where $\mathbf{d}_{2}^{(k)} = r_{1}\left(\mathbf{y} - \mathbf{X}\beta^{(k+1)} - \mathbf{z}^{(k)}\right) + r_{2}\mathbf{D}^{T}\mathbf{s}^{(k)} + \mathbf{q}_{1}^{(k)} - \mathbf{D}^{T}\mathbf{q}_{2}^{(k)}.$

э

< E

$$z_i^{(k+1)} = S\left(y_i - \mu_i^{(k+1)} - \mathbf{x}_i^T \beta^{(k+1)} + \frac{q_{1,i}^{(k)}}{r_1}, \frac{1}{nr_1}\right),$$

where $S(x, \lambda)$ is the soft-thresholding function. • L₂:

$$z_i^{(k+1)} = \frac{y_i - \mu_i^{(k+1)} - \boldsymbol{x}_i^T \boldsymbol{\beta}^{(k+1)} + \frac{q_{1,i}^{(k)}}{r_1}}{1 + \frac{2}{nr_1}}.$$

For L_2 , *z* can be omitted in the algorithm.

....

(k)

• $\boldsymbol{z}^{(k+1)} = \underset{\boldsymbol{z}}{\operatorname{argmin}} L\left(\beta^{(k+1)}, \boldsymbol{\mu}^{(k+1)}, \boldsymbol{z}, \boldsymbol{s}^{(k)}, \boldsymbol{w}^{(k)}, \boldsymbol{q}_{1}^{(k)}, \boldsymbol{q}_{2}^{(k)}, \boldsymbol{q}_{3}^{(k)}\right).$ The update of \boldsymbol{z} depends on the choice of the loss ρ , and it can be computed elementwisely. Let $\boldsymbol{d}_{\boldsymbol{z},i}^{(k)} = \boldsymbol{y}_i - \boldsymbol{\mu}_i^{(k+1)} - \boldsymbol{x}_i^T \beta^{(k+1)} + \frac{\boldsymbol{q}_{1,i}^{(k)}}{r_1}.$ • *Huber*:

$$z_{i}^{(k+1)} = \begin{cases} S\left(d_{z,i}^{(k)}, \frac{c}{nr_{1}}\right) & \left(\frac{1}{nr_{1}}+1\right)c < \left|d_{z,i}^{(k)}\right| \\ \frac{d_{z,i}^{(k)}}{1+\frac{1}{nr_{1}}} & \left(\frac{1}{nr_{1}}+1\right)c \ge \left|d_{z,i}^{(k)}\right| \end{cases}$$

Quantile regression:

$$z_{i}^{(k+1)} = \begin{cases} d_{z,i}^{(k)} - \frac{\tau}{nr_{1}} & \frac{\tau}{nr_{1}} < d_{z,i}^{(k)} \\ 0 & \frac{\tau-1}{nr_{1}} \le d_{z,i}^{(k)} \le \frac{\tau}{nr_{1}} \\ d_{z,i}^{(k)} + \frac{1-\tau}{nr_{1}} & d_{z,i}^{(k)} \le \frac{\tau-1}{nr_{1}} \\ \end{cases}$$

• $\boldsymbol{s}^{(k+1)} = \underset{\boldsymbol{s}}{\operatorname{argmin}} L\left(\beta^{(k+1)}, \boldsymbol{\mu}^{(k+1)}, \boldsymbol{z}^{(k+1)}, \boldsymbol{s}, \boldsymbol{w}^{(k)}, \boldsymbol{q}_{1}^{(k)}, \boldsymbol{q}_{2}^{(k)}, \boldsymbol{q}_{3}^{(k)}\right).$ The update of \boldsymbol{s} depends on the choice of the loss $P_{\lambda_{1}}$, and it can be computed elementwisely. Let $d_{\boldsymbol{s}, \boldsymbol{ij}}^{(k)} = \mu_{\boldsymbol{i}}^{(k+1)} - \mu_{\boldsymbol{j}}^{(k+1)} + \frac{q_{2, \boldsymbol{ij}}^{(k)}}{r_{2}}.$ • LASSO:

$$\mathbf{s}_{ij}^{(k+1)} = \mathbf{S}\left(\mathbf{d}_{s,ij}^{(k)}, \frac{\lambda_1}{r_2}\right).$$

• MCP with $r_2\gamma_1 > 1$:

$$m{s}_{ij}^{(k+1)} = egin{cases} \displaystyle rac{S\left(m{d}_{s,ij}^{(k)}, rac{\lambda_1}{r_2}
ight)}{1 - rac{1}{r_2\gamma_1}} & \left|m{d}_{s,ij}^{(k)}
ight| \leq \gamma_1\lambda_1 \ m{d}_{s,ij}^{(k)} & \left|m{d}_{s,ij}^{(k)}
ight| > \gamma_1\lambda_1 \end{cases}$$

• $\boldsymbol{s}^{(k+1)} = \underset{\boldsymbol{s}}{\operatorname{argmin}} L\left(\boldsymbol{\beta}^{(k+1)}, \boldsymbol{\mu}^{(k+1)}, \boldsymbol{z}^{(k+1)}, \boldsymbol{s}, \boldsymbol{w}^{(k)}, \boldsymbol{q}_{1}^{(k)}, \boldsymbol{q}_{2}^{(k)}, \boldsymbol{q}_{3}^{(k)}\right).$ The update of \boldsymbol{s} depends on the choice of the loss $P_{\lambda_{1}}$, and it can be computed elementwisely. Let $d_{\boldsymbol{s},\boldsymbol{ij}}^{(k)} = \mu_{\boldsymbol{i}}^{(k+1)} - \mu_{\boldsymbol{j}}^{(k+1)} + \frac{q_{2,\boldsymbol{ij}}^{(k)}}{r_{2}}.$ • SCAD with $r_{2}(\gamma_{1}-1) > 1$:

$$\boldsymbol{s}_{ij}^{(k+1)} = \begin{cases} \boldsymbol{S}\left(\boldsymbol{d}_{s,ij}^{(k)}, \frac{\lambda_{1}}{r_{2}}\right) & \left|\boldsymbol{d}_{s,ij}^{(k)}\right| \leq \left(1 + \frac{1}{r_{2}}\right)\lambda_{1} \\ \frac{\boldsymbol{S}\left(\boldsymbol{d}_{s,ij}^{(k)}, \frac{\gamma_{1}\lambda_{1}}{r_{2}(\gamma_{1}-1)}\right)}{1 - \frac{1}{r_{2}(\gamma_{1}-1)}} & \left(1 + \frac{1}{r_{2}}\right)\lambda_{1} < \left|\boldsymbol{d}_{s,ij}^{(k)}\right| \leq \gamma_{1}\lambda_{1} \\ \boldsymbol{d}_{s,ij}^{(k)} & \left|\boldsymbol{d}_{s,ij}^{(k)}\right| > \gamma_{1}\lambda_{1} \end{cases}$$

• $\boldsymbol{w}^{(k+1)} = \underset{\boldsymbol{w}}{\operatorname{argmin}} L\left(\beta^{(k+1)}, \boldsymbol{\mu}^{(k+1)}, \boldsymbol{z}^{(k+1)}, \boldsymbol{s}^{(k+1)}, \boldsymbol{w}, \boldsymbol{q}_{1}^{(k)}, \boldsymbol{q}_{2}^{(k)}, \boldsymbol{q}_{3}^{(k)}\right).$ The update of \boldsymbol{w} depends on the choice of the loss $P_{\lambda_{2}}$, and it can be computed elementwisely. Let $d_{w,j}^{(k)} = \beta_{j}^{(k+1)} + \frac{q_{3,j}^{(k)}}{r_{3}}.$ • LASSO: $(k+1) = \left((k) - \lambda_{2} \right)$

$$w_j^{(k+1)} = S\left(d_{w,j}^{(k)}, \frac{\lambda_2}{r_3}\right).$$

• MCP with $r_3\gamma_2 > 1$:

$$w_j^{(k+1)} = \begin{cases} \frac{S\left(d_{w,j}^{(k)}, \frac{\lambda_2}{r_3}\right)}{1 - \frac{1}{r_3\gamma_2}} & \left|d_{w,j}^{(k)}\right| \le \gamma_2\lambda_2\\ d_{w,j}^{(k)} & \left|d_{w,j}^{(k)}\right| > \gamma_2\lambda_2 \end{cases}$$

•
$$\boldsymbol{w}^{(k+1)} = \underset{\boldsymbol{w}}{\operatorname{argmin}} L\left(\beta^{(k+1)}, \boldsymbol{\mu}^{(k+1)}, \boldsymbol{z}^{(k+1)}, \boldsymbol{s}^{(k+1)}, \boldsymbol{w}, \boldsymbol{q}_{1}^{(k)}, \boldsymbol{q}_{2}^{(k)}, \boldsymbol{q}_{3}^{(k)}\right).$$

The update of \boldsymbol{w} depends on the choice of the loss $P_{\lambda_{2}}$, and it can
be computed elementwisely. Let $d_{w,j}^{(k)} = \beta_{j}^{(k+1)} + \frac{q_{3,j}^{(k)}}{r_{3}}.$
• SCAD with $r_{3}(\gamma_{2}-1) > 1$:

$$w_j^{(k+1)} = \begin{cases} S\left(d_{w,j}^{(k)}, \frac{\lambda_2}{r_3}\right) & \left|d_{w,j}^{(k)}\right| \le \left(1 + \frac{1}{r_3}\right)\lambda_2 \\ \frac{S\left(d_{w,j}^{(k)}, \frac{\gamma_2\lambda_2}{r_3(\gamma_2 - 1)}\right)}{1 - \frac{1}{r_3(\gamma_2 - 1)}} & \left(1 + \frac{1}{r_3}\right)\lambda_2 < \left|d_{w,j}^{(k)}\right| \le \gamma_2\lambda_2 \\ d_{w,j}^{(k)} & \left|d_{w,j}^{(k)}\right| > \gamma_2\lambda_2 \end{cases}$$

æ

Update the multipliers by

$$\begin{cases} \boldsymbol{q}_{1}^{(k+1)} = \boldsymbol{q}_{1}^{(k)} + r_{1} \left(\boldsymbol{y}^{(k+1)} - \boldsymbol{\mu}^{(k+1)} - \boldsymbol{X} \boldsymbol{\beta}^{(k+1)} - \boldsymbol{z}^{(k+1)} \right) \\ \boldsymbol{q}_{2}^{(k+1)} = \boldsymbol{q}_{2}^{(k)} + r_{2} \left(\boldsymbol{D} \boldsymbol{\mu}^{(k+1)} - \boldsymbol{s}^{(k+1)} \right) \\ \boldsymbol{q}_{3}^{(k+1)} = \boldsymbol{q}_{3}^{(k)} + r_{3} \left(\boldsymbol{\beta}^{(k+1)} - \boldsymbol{w}^{(k+1)} \right) \end{cases},$$

Conditions on the loss function

- If ρ is continuous on \mathcal{R} , and differentiable except finite many points.
- ${}^{\textcircled{0}}$ ρ is convex.
- Solution ρ has unique minimal point at 0 and $\rho(0) = 0$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Convergence of the Algorithm

Theorem

Denote the primal residual at step m by

$$oldsymbol{r}^{(m)} = egin{pmatrix} oldsymbol{y} - oldsymbol{u}^{(m)} - oldsymbol{X}^Teta^{(m)} - oldsymbol{z}^{(m)} \ oldsymbol{D}\mu^{(m)} - oldsymbol{s}^{(m)} \ oldsymbol{eta}^{(m)} - oldsymbol{w}^{(m)} \end{pmatrix},$$

and the dual residual by

$$\boldsymbol{\eta}^{(m+1)} = \begin{pmatrix} r_1 \left(\boldsymbol{z}^{(m+1)} - \boldsymbol{z}^{(m)} \right) - r_2 \boldsymbol{D}^T \left(\boldsymbol{s}^{(m+1)} - \boldsymbol{s}^{(m)} \right) \\ r_1 \boldsymbol{X}^T \left(\boldsymbol{z}^{(m+1)} - \boldsymbol{z}^{(m)} \right) - r_3 \left(\boldsymbol{w}^{(m+1)} - \boldsymbol{w}^{(m)} \right) \end{pmatrix}.$$
(6)

These residuals of the proposed algorithm satisfy that

$$\lim_{m\to\infty} \left\|\boldsymbol{r}^{(m)}\right\|_2^2 = 0, \qquad \lim_{m\to\infty} \left\|\boldsymbol{\eta}^{(m)}\right\|_2^2 = 0$$

for the Lasso, SCAD and MCP penalties if Conditions (C1)–(C3) hold.

Chao Cheng (SSM)

(5)

We search the grid points of a rectange plane, from $(\lambda_{1,max}, \lambda_{2,max})$ to $(\lambda_{1,min}, \lambda_{2,min})$, for the solution pathes. We choose $(\lambda_{1,max}, \lambda_{2,max})$ by

$$\lambda_{1,max} = \frac{1}{n} \left\| \boldsymbol{D} \left(\boldsymbol{D}^{\mathsf{T}} \boldsymbol{D} \right)^{-1} \begin{pmatrix} \psi \left(y_{1} - c \right) \\ \psi \left(y_{2} - c \right) \\ \vdots \\ \psi \left(y_{n} - c \right) \end{pmatrix} \right\|_{\infty},$$

and

$$\lambda_{2,max} = \frac{1}{n} \left\| \sum_{i=1}^{n} \left(\psi \left(y_{i} - c \right) \right) \boldsymbol{x}_{i} \right\|_{\infty},$$

where
$$\boldsymbol{c} = \operatorname*{argmin}_{\mu} \sum_{i=1}^{n} \rho(\boldsymbol{y}_i - \mu).$$

Searching Intervals for λ

A toy example

Figure: Contour figure about loss value using SCAD(left) or MCP(right) penalty of a toy example. $\rho(x) = |x|$, n = 2, p = q = 0, $\varepsilon \sim N(0, 0.5^2)$, $\mu_1 = 1$, $\mu_2 = -1$. The red dot is median(y).

Chao Cheng (SSM)

We use the modified BIC to select the tuning parameters.

BIC
$$\left(\hat{\boldsymbol{\mu}}(\boldsymbol{\lambda}), \hat{\boldsymbol{\beta}}(\boldsymbol{\lambda})\right) = \log\left(\frac{1}{n}\sum_{i=1}^{n}\rho\left(\boldsymbol{y}_{i}-\boldsymbol{z}_{i}^{T}\hat{\boldsymbol{\mu}}_{i}-\boldsymbol{x}_{i}^{T}\hat{\boldsymbol{\beta}}\right)\right) + \left|\hat{\boldsymbol{S}}_{\boldsymbol{\lambda}}\right|\phi_{n},$$
(7)

where $|\hat{S}_{\lambda}| = \hat{K} + \hat{q}$, $\phi_n = c \frac{\log n}{n} \log \log (n + p)$ for some constant *c*.

э

- Warm start strategy.
- A clustering method as a post-processor.
 - Rounding or hard thresholding.
 - Find the grouping result from $\{\hat{s}_{ij}\}$.
 - A simple clustering method, like k-means.
- Post-selection estimation
- Parallel/Distributed computation. We use OpenMP with C++.

Given the real subgroup structure $G_0 = \{G_1, \dots, G_{K_0}\}$, the original moder can be seen as

$$y_i = \boldsymbol{g}_i^T \boldsymbol{\alpha} + \boldsymbol{x}_i^T \boldsymbol{\beta} + \varepsilon_i,$$

where g_i s are K_0 -dimensional indicator vector, $g_{ij} = 1$ if $i \in G_j$. α is the grouping effect, for all $i \in G_k$, $\mu_i = \alpha_k$.

The oracle estimator is

$$\begin{pmatrix} \tilde{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\beta}} \end{pmatrix} = \left(\tilde{\boldsymbol{\alpha}}, \left(\tilde{\boldsymbol{\beta}}_{A}^{T}, \mathbf{0}_{p-q}^{T} \right)^{T} \right)$$

= $\underset{\boldsymbol{\alpha}, \boldsymbol{\beta}_{A}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \rho \left(\boldsymbol{y}_{i} - \boldsymbol{g}_{i}^{T} \boldsymbol{\alpha} - \boldsymbol{x}_{A, i}^{T} \boldsymbol{\beta}_{A} \right),$

and $\tilde{\mu}_i = \boldsymbol{g}_i^T \tilde{\boldsymbol{\alpha}}$.

æ

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

(8)

(A1) There exist constants M_1 , C_1 and C_2 such that $|x_{ij}| \le M_1$ for all $1 \le i \le n, 1 \le j \le p$ and

$$C_{1} \leq \lambda_{\min} \begin{pmatrix} \frac{1}{n} \begin{pmatrix} \boldsymbol{G} & \boldsymbol{X}_{A} \end{pmatrix}^{T} \begin{pmatrix} \boldsymbol{G} & \boldsymbol{X}_{A} \end{pmatrix} \end{pmatrix}$$
$$\leq \lambda_{\max} \begin{pmatrix} \frac{1}{n} \begin{pmatrix} \boldsymbol{G} & \boldsymbol{X}_{A} \end{pmatrix}^{T} \begin{pmatrix} \boldsymbol{G} & \boldsymbol{X}_{A} \end{pmatrix} \end{pmatrix} \leq C_{2}.$$

(A2) max {
$$K_0, q$$
} = $O(n^{c_1})$ for some $0 \le c_1 < \frac{1}{3}$.
(A3) Let $b_n = \min\left(\min_{i \ne j} |\alpha_{0,i} - \alpha_{0,j}|, \min_{1 \le j \le q} |\beta_{0,j}|\right)$. Then there exist constans c_2 and M_3 such that

$$2c_1 < c_2 \leq 1$$
 and $n^{(1-c_2)/2}b_n \geq M_3$.

3

(A4) $\psi(\varepsilon_i)$ is uniformly subgaussian in a neighbourhood around 0. That means there exists a positive constant c_3 such that for all constant $c \in [-c_3, c_3]$,

$$P(|\psi(\varepsilon_i+c)|>x) \leq 2\exp(-c_4x^2),$$

where c_4 is some positive constant.

(A5) $E\psi(\varepsilon_i)$ and $Var(\psi(\varepsilon_i))$ are uniformly continuous, which means $E\psi(\varepsilon_i + \Delta)$ and $Var\psi(\varepsilon_i + \Delta)$ is close to $E\psi(\varepsilon_i)$ and $Var\psi(\varepsilon_i)$.

Theorem

Suppose that Assumptions (A1)–(A5) hold. Also if $\max (\lambda_1, \lambda_2) = o(n^{-(1-c_2)/2}), \sqrt{q(K_0 + q)} = o(\sqrt{n}\lambda_2),$ $(K_0 + q)\log n = o(n\lambda_2), \log(p) = o(n\lambda_2^2), n\lambda_2^2 \to \infty \text{ and }$ $\sqrt{\log n} = o(n\lambda_1 |G_k|_{\min}).$ Then with probability approaching to 1, the oracle estimater is among the local minimizer of the penalized regression function (2) with penalties SCAD or MCP.

Theorem

Assume the Assumptions (A1)–(A5), and (A6),(A7) in Appendix hold. Then for any sequence $\phi_n \rightarrow 0$ satisfying $\log(n + p) / n = o(\phi_n)$, we have

$$P\left(\inf_{S\neq S_{0},|S|\leq K_{u}+q_{U}}\operatorname{BIC}\left(\tilde{\delta}\left(\mathcal{S}\right)\right)>\operatorname{BIC}\left(\tilde{\delta}\left(S_{0}\right)\right)\right)\to\mathsf{1}$$

where $K_u \in (K_0, \infty)$ and $q_U \in (q, \infty)$ are the upper bounds for the number of subgroups and active coefficients respectively. $\tilde{\delta}(S)$ denotes the unpenalized M-estimator given the model structure S. And S_0 represents the true model structure.

イロト イヨト イヨト イヨト

Consider $y_i = \mu_i + \mathbf{x}_i^T \beta + \varepsilon_i$, $i = 1, 2, \dots, n$, under various scenarios. • $n \in \{200, 1000\}, p \in \{5, 50, 100, 500\}.$

•
$$q = 5, \beta = (\mathbf{1}_5^T, \mathbf{0}_{\rho-5}^T)^T$$

- K = 2 with $\alpha = (-1, 1)^T$ or K = 3 with $\alpha = (-2, 0, 2)^T$, or K = 5 with $\alpha = (-4, -2, 0, 2, 4)^T$.
- μ_is follow the independent multinormial distribution over α with equal probability.
- **x**_i follows standard normal distribution.
- $\varepsilon_i = 0.5\epsilon_i$ independently, where

•
$$\epsilon_i \sim N(0, 1)$$

• $\epsilon_i \sim t(5).$

3 $\epsilon_i \sim 0.95 \times N(0, 1) + 0.05 \times N(0, 10^2).$

Simulation Basic Settings

Figure: A demonstration about data points overlapping under our simulation settings.

Consider $y_i = \mu_i + \mathbf{x}_i^T \boldsymbol{\beta} + \varepsilon_i$, $i = 1, 2, \cdots, n$, under various scenarios.

- The proposed method with L_1 , L_2 and *Huber* loss.
- Another candidate method RSI (Zhang et al., 2019, Robust subgroup identification).
- MAE_{μ} and MAE_{β} : the mean absolute error of μ and β .
- *K*, *K*, *q* and *q*: the average and median value of the estimated number of subgroups and active covariates respectively.
- *RI* (Rand, 1971, Rand Index): this index describes how close two grouping results are and is computed by

$$RI(\mathbf{G}_1,\mathbf{G}_2)=\frac{2}{n(n-1)}\times(TP+TN).$$

< 回 > < 回 > < 回 > -

Method	MAE_{μ}	MAE_{β}	Ē	Ñ	ĒΙ	ŘΙ
L_1	0.116	0.040	2.000	2	0.941	0.942
sd	0.040	0.014	0.000		0.024	0.000
L ₂	0.111	0.038	2.090	2	0.940	0.951
sd	0.059	0.016	0.514		0.042	0.000
Huber	0.105	0.037	2.000	2	0.944	0.951
sd	0.039	0.015	0.000		0.024	0.000
RSI	0.135	0.071	2.020	2	0.939	0.951
sd	0.154	0.082	0.141		0.057	0.000
L_{1}^{1000}	0.123	0.042	2.050	2	0.936	0.942
sd	0.051	0.018	0.261		0.034	0.000

Table: Benchmark for subgroup analysis. n = 200, p = q = 5, K = 2. Error type: Case 1.

Method	MAE_{μ}	MAE_{β}	Ē	Ñ	ĒΙ	ŔΙ
L_1	0.529	0.081	2.370	2	0.819	0.743
sd	0.307	0.042	0.485		0.103	0.000
L ₂	0.302	0.063	3.830	3	0.878	0.917
sd	0.301	0.032	1.583		0.139	0.000
Huber	0.224	0.060	3.120	3	0.916	0.932
sd	0.162	0.032	0.573		0.055	0.000
RSI	0.252	0.089	2.870	3	0.916	0.944
sd	0.224	0.035	0.367		0.076	0.000
L_{1}^{1000}	0.238	0.068	3.310	3	0.906	0.919
sd	0.126	0.037	0.787		0.051	0.000

Table: Benchmark for subgroup analysis. n = 200, p = q = 5, K = 3. Error type: Case 1.

Method	MAE_{μ}	MAE_{β}	Ē	Ñ	ĒΙ	ŔΙ
L_1	0.172	0.045	2.000	2	0.892	0.896
sd	0.043	0.018	0.000		0.030	0.000
L ₂	0.461	0.057	2.070	2	0.753	0.861
sd	0.375	0.026	1.380		0.183	0.000
Huber	0.167	0.044	2.000	2	0.893	0.896
sd	0.045	0.018	0.000		0.031	0.000
RSI	0.177	0.067	2.000	2	0.892	0.896
sd	0.053	0.037	0.000		0.034	0.000
L_1^{1000}	0.186	0.047	2.130	2	0.882	0.896
sd	0.070	0.022	0.506		0.049	0.000

Table: Benchmark for subgroup analysis. n = 200, p = q = 5, K = 2. Error type: Case 2.

Method	MAE_{μ}	MAE_{β}	Ē	Ñ	ĒΙ	ŘΙ
L ₁	0.718	0.098	2.090	2	0.750	0.735
sd	0.170	0.040	0.288		0.055	0.000
L ₂	0.746	0.084	3.330	3	0.671	0.814
sd	0.505	0.035	2.216		0.248	0.000
Huber	0.298	0.069	3.060	3	0.880	0.890
sd	0.168	0.032	0.509		0.051	0.000
RSI	0.355	0.102	2.820	3	0.869	0.899
sd	0.269	0.086	0.411		0.074	0.000
L_{1}^{1000}	0.299	0.073	3.330	3	0.877	0.886
sd	0.113	0.035	0.792		0.041	0.000

Table: Benchmark for subgroup analysis. n = 200, p = q = 5, K = 3. Error type: Case 2.

Subgroup Analysis and Variable Selection n = 200, p = 50, q = 5, K = 2

Method	MAE_{μ}	MAE_{β}	Ē	Ñ	ą	q	ĒΙ	ŔΙ
L_1	0.255	0.008	2.040	2	4.980	5	0.829	0.835
sd	0.077	0.006	0.197		0.141		0.051	0.000
L_2	1.017	0.034	1.370	1	3.630	5	0.501	0.501
sd	0.040	0.041	0.544		2.205		0.001	0.000
Huber	0.906	0.051	2.380	2	2.870	5	0.700	0.612
sd	0.682	0.043	0.582		2.295		0.151	0.000
RSI	0.674	0.098	5.240	5.5	50	50	0.633	0.604
sd	0.184	0.024	2.920		0.000		0.080	0.000

Table: Subgroup analysis and variable selection. n = 200, p = 50, q = 5, K = 2. Error type: Case 3.

Method	MAE_{μ}	MAE_{β}	Ē	Ñ	ą	q	ĒΙ	ŔΙ
L_1	0.828	0.019	2.000	2	4.780	5	0.712	0.718
sd	0.086	0.015	0.000		0.645		0.025	0.000
L ₂	1.425	0.100	1.000	1	0.000	0	0.333	0.333
sd	0.031	0.000	0.000		0.000		0.000	0.000
Huber	0.813	0.023	2.200	2	5.250	5	0.709	0.709
sd	0.250	0.016	0.512		1.403		0.104	0.000
RSI	1.055	0.153	4.440	3	50	50	0.662	0.668
sd	0.141	0.038	2.702		0.000		0.033	0.000

Table: Subgroup analysis and variable selection. n = 200, p = 50, q = 5, K = 3. Error type: Case 3.

Method	MAE_{μ}	MAE_{β}	Ē	Ñ	ą	q	ĒΙ	ŔΙ
L_1	0.236	0.003	2.000	2	5.000	5	0.838	0.844
sd	0.069	0.002	0.000		0.000		0.047	0.000
L ₂	0.993	0.050	1.000	1	0.000	0	0.501	0.501
sd	0.014	0.000	0.000		0.000		0.000	0.000
Huber	0.384	0.006	1.940	2	5.430	5	0.773	0.840
sd	0.298	0.006	0.489		1.130		0.139	0.000
RSI	0.891	0.121	6.630	7	100.000	100	0.537	0.532
sd	0.239	0.028	2.820		0.000		0.029	0.000

Table: Subgroup analysis and variable selection. n = 200, p = 100, q = 5, K = 2. Error type: Case 2.

Method	MAE_{μ}	MAE_{β}	Ē	Ñ	ą	q	ĒΙ	ŔΙ
L ₁	0.818	0.009	2.000	2	4.740	5	0.719	0.726
sd	0.082	0.007	0.000		0.705		0.025	0.000
L ₂	1.424	0.048	1.020	1	0.250	0	0.333	0.333
sd	0.041	0.004	0.141		0.575		0.005	0.000
Huber	0.736	0.011	2.300	2	4.900	5	0.733	0.724
sd	0.273	0.008	0.522		1.078		0.101	0.000
RSI	1.357	0.192	6.560	7	100.000	100	0.608	0.613
sd	0.305	0.050	2.607		0.000		0.040	0.000

Table: Subgroup analysis and variable selection. n = 200, p = 100, q = 5, K = 3. Error type: Case 2.

High Dimensional Dataset n = 200, p = 500, q = 5

Κ	Method	MAE_{μ}	MAE_{β}	Ē	Ñ	ą	q	ĒΙ	ŘΙ
	L ₁	0.389	0.002	2.000	2	4.360	5	0.782	0.819
	sd	0.304	0.003	0.000		1.375		0.105	0.000
0	L ₂	0.995	0.010	1.010	1	0.000	0	0.501	0.501
2	sd	0.031	0.000	0.100		0.000		0.002	0.000
	Huber	0.585	0.003	2.140	2	4.290	5	0.732	0.773
	sd	0.462	0.003	0.450		1.924		0.131	0.000
	L ₁	0.938	0.004	2.000	2	3.610	4	0.677	0.680
	sd	0.140	0.003	0.000		1.456		0.049	0.000
2	L ₂	1.425	0.010	1.000	1	0.000	0	0.333	0.333
3	sd	0.036	0.000	0.000		0.000		0.000	0.000
	Huber	0.925	0.005	2.300	2	3.410	4	0.687	0.686
	sd	0.236	0.003	0.461		1.718		0.065	0.000

Table: Subgroup analysis and variable selection in high dimension. n = 200, p = 500, q = 5. Error type: Case 2.

High Dimensional Dataset n = 200, p = 500, q = 5

Κ	Method	MAE_{μ}	MAE_{β}	Ē	Ñ	ą	q	ĒΙ	ŘΙ
	L ₁	0.458	0.003	2.000	2	4.170	5	0.747	0.792
	sd	0.316	0.003	0.000		1.393		0.113	0.000
0	L ₂	0.993	0.010	1.000	1	0.000	0	0.501	0.501
2	sd	0.015	0.000	0.000		0.000		0.000	0.000
	Huber	0.932	0.005	1.990	2	3.110	3	0.623	0.593
	sd	0.398	0.003	0.502		1.769		0.103	0.000
	L ₁	0.941	0.004	2.000	2	3.560	4	0.672	0.675
	sd	0.131	0.002	0.000		1.351		0.045	0.000
2	L ₂	1.427	0.010	1.000	1	0.000	0	0.333	0.333
3	sd	0.035	0.000	0.000		0.000		0.000	0.000
	Huber	1.000	0.006	2.160	2	2.870	3	0.657	0.645
	sd	0.164	0.003	0.368		1.548		0.047	0.000

Table: Subgroup analysis and variable selection in high dimension. n = 200, p = 500, q = 5. Error type: Case 3.

Method	MAE_{μ}	MAE_{β}	Ē	Ñ	ĒΙ	ŔΙ
L_1	0.072	0.018	2.000	2	0.951	0.953
sd	0.015	0.006	0.000		0.010	0.000
L ₂	0.284	0.025	6.690	7	0.739	0.738
sd	0.037	0.008	0.506		0.037	0.000
Huber	0.070	0.015	2.000	2	0.951	0.951
sd	0.015	0.005	0.000		0.010	0.000
RSIDAC	0.718	0.310	6.520	7	0.684	0.676
sd	0.387	0.173	2.772		0.096	0.000

Table: Subgroup analysis and variable selection in high dimension, n = 1000, p = q = 5, K = 2. Error type: Case 1.

Method	MAE_{μ}	MAE_{β}	Ē	Ñ	ĒΙ	ŔΙ
L_1	0.542	0.058	3.940	5	0.857	0.958
sd	0.548	0.046	1.469		0.143	0.000
L ₂	0.185	0.041	5.920	6	0.952	0.952
sd	0.062	0.017	0.929		0.014	0.000
Huber	0.473	0.049	4.100	5	0.875	0.960
sd	0.531	0.035	1.382		0.136	0.000
RSIDAC	1.229	0.249	6.200	7	0.739	0.736
sd	0.287	0.162	1.820		0.031	0.000

Table: Subgroup analysis and variable selection in high dimension, n = 1000, p = q = 5, K = 5. Error type: Case 1.

- It is conceptually straightforward to extend to other models, such as logistic regression.
- Speed up ADMM.
- Theoretical results for selection consistency.
- It requires careful design and study of the algorithm for extra large datasets.

- Rand, W. M. (1971), "Objective Criteria for the Evaluation of Clustering Methods," *Journal of the American Statistical Association*, 66, 846–850.
- Zhang, Y., Wang, H. J., and Zhu, Z. (2019), "ROBUST SUBGROUP IDENTIFICATION," *Statistica Sinica*.

- A B M A B M