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Cancer heterogeneity plays an important role in the understanding of tumor eti-
ology, progression, and response to treatment. To accommodate heterogeneity,
cancer subgroup analysis has been extensively conducted. However, most of the
existing studies share the limitation that they cannot accommodate heavy-tailed
or contaminated outcomes and also high dimensional covariates, both of which
are not uncommon in biomedical research. In this study, we propose a robust
subgroup identification approach based on M-estimators together with con-
cave and pairwise fusion penalties, which advances from existing studies by
effectively accommodating high-dimensional data containing some outliers.
The penalties are applied on both latent heterogeneity factors and covariates,
where the estimation is expected to achieve subgroup identification and vari-
able selection simultaneously, with the number of subgroups being apriori
unknown. We innovatively develop an algorithm based on parallel computing
strategy, with a significant advantage of capable of processing large-scale data.
The convergence property of the proposed algorithm, oracle property of the
penalized M-estimators, and selection consistency of the proposed BIC crite-
rion are carefully established. Simulation and analysis of TCGA breast cancer
data demonstrate that the proposed approach is promising to efficiently identify
underlying subgroups in high-dimensional data.
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1 INTRODUCTION

Cancer heterogeneity has received intensive attention in recent biomedical research, which is crucial for understand-
ing tumor etiology, progression, and response to treatment.1 For example, in precision medicines and individualized
treatment designs, it is widely recognized that treatment effects may vary among different patient subgroups.2 Cancer is
extremely complex, of which the heterogeneity may be attributed to many factors, including clinical, environmental, and
demographic factors with usually low-dimension, as well as genetic factors with high-dimension.3 Thus, heterogeneity
analysis for identifying cancer subgroups remains a challenging task in cancer modeling.

Recently, a number of statistical methods have been developed for cancer subgroup analysis. Among them, it is popular
to consider data as coming from mixture models, including Atienza et al and Shen et al with low-dimensional covari-
ates,4,5 and Khalili et al and Ren et al with high-dimensional covariates.6,7 Mixture models can easily incorporate covariate
effects due to its theoretical framework, but the number of subgroups and the corresponding underlying distributions are
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usually pre-specified, which is hard to be verified in practical cancer modeling. To address this issue, penalization methods
have been developed which can identify hidden subgroups and estimate their centers simultaneously, without any prior
information of true subgroup structures. Examples include Chi et al and Wu et al from an unsupervised clustering per-
spective,8,9 and Ma et al and Chen et al based on a supervised regression model.10,11 Here the supervised heterogeneity
analysis studies effectively make use of the outcome-predictor relationship and often have more important practical impli-
cations. They usually model heterogeneity by unobserved subject-specific latent factors after adjusting for the effects of a
set of observed covariates such as gender, age, and so on.10,11 Despite considerable successes, these studies are limited by
only exploring low-dimensional covariates and cannot accommodate high-dimensional data, such as genetic factors. The
genetic factors also play an important role in cancer heterogeneity, and the conclusions regarding the cancer subgroups
are likely confounded by inappropriately overlooking the genetic effects.3 High dimensionality of genetic data poses many
challenges for cancer subgroup analysis, both computationally and theoretically.

Another challenge for supervised heterogeneity analysis comes from the heavy-tailed distributions and contamina-
tion in responses, which is not uncommon in practical cancer studies and can be caused by multiple factors, including
the inherent variability of data, biased sample selection, and mistakes in data recording, among others.12 Take the TCGA
(The Cancer Genome Atlas) breast cancer data analyzed in Section 5 of this article as an example, we observe heav-
ier right tails for the response in Figure 1A. However, most of the existing supervised heterogeneity studies, including
the aforementioned, are based on the least squares loss and cannot accommodate heavy-tails and outliers, leading to
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F I G U R E 1 Analysis of BRCA data: density plot for mRNA expression of BRCA1 and estimated subgroup results with the proposed
approach and RSI are shown in (A–C)
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inaccurate subgroup identification and biased estimation. The limited robust study is proposed by Zhang et al,13 which is
an extension of Ma et al10 and adopts the median regression to achieve robustness, but also focuses on low-dimensional
covariates.

In this article, we propose a novel robust cancer subgroup identification approach with certain variable selection
method to simultaneously choose useful variables from a large number of candidate covariates. The proposed approach is
under the similar framework as Ma et al and Zhang et al that identifies subject subgroups via a pairwise fusion penalty.10,13

It not only shares similar desirable properties as the existing ones, including automatically determining the number of
subgroups and without making assumptions on specific underlying data distributions, but also advances from them in
multiple aspects. First, the proposed approach is built on the robust M-regression which enjoys satisfactory robustness
properties toward heavy-tailed errors and outliers. Although M-regression has been a popular tool in statistical analysis, its
applications to cancer subgroup analysis are still limited. It has a solid statistical basis and includes the least absolute devi-
ation estimator of Zhang et al as a special case.13 Second, we analyze high dimensional covariates which are common in
cancer studies and adopt the penalization technique for regularized estimation and variable selection, improving not only
accuracy of subgroup identification but also interpretability of the model. Third, a parallel computing strategy based on an
alternating direction method of multipliers (ADMM) algorithm is developed to speed up the computation. This is much
desirable for large-scale cancer data, where the pairwise fusion penalty makes the complexity of ordinary algorithms in
existing studies at the quadratic order of the sample size. In addition, we derive the convergence property of our algorithm
and establish the oracle properties for both subgroup recovery and variable selection with a variety of penalties, including
smoothly clipped absolute deviation (SCAD) and minimax concave penalty (MCP), providing theoretical results in a more
general sense. Overall, this study provides an effective way of conducting robust identification of cancer subgroups for
high-dimensional data.

2 METHODS

Consider n independent subjects, which are collected from the unknown K different subgroups. For the ith subject, denote
xi as the p-dimensional covariate vector and yi as the continuous response. We consider the following linear regression
model

yi = 𝜇i + xT
i 𝜷 + 𝜀i, i = 1, 2, … ,n, (1)

where 𝜇i is the unobserved latent heterogeneity effect attributable to the i-th subject, such as the individual treat-
ment effect, 𝜷 = (𝛽1, … , 𝛽p)′ is the regression coefficient vector, 𝜀i’s are the independently distributed errors satisfying
E𝜓 (𝜀i) = 0 with 𝜓(⋅) being the derivative (or directional derivative) of 𝜌(⋅), and 𝜌(⋅) is a robust loss function which
is differentiable except at finitely many points, for example, L1 loss with 𝜌(t) = |t| and Huber loss with 𝜌(t) ={

t2

2
if |t| ≤ 𝜉

𝜉|t| − 𝜉
2

2
if |t| > 𝜉

. Here, we assume E𝜓 (𝜀i) = 0, which is a commonly used condition for model identification in the

M-regression literature.14,15 The ordinary linear regression is a special case of M-regression with 𝜌(t) = t2, and accordingly
𝜓 (t) = 2t and E𝜓 (𝜀i) = 2E(𝜀i) = 0.

For identifying subject subgroups and important covariates simultaneously, we propose the following penalized
objective function,

1
n

n∑

i=1
𝜌

(
yi − 𝜇i − xT

i 𝜷
)
+

∑

1≤i<j≤n
P𝜆1,𝛾

(
|𝜇i − 𝜇j|

)
+

p∑

j=1
P𝜆2,𝛾

(
|𝛽j|

)
, (2)

where P𝜆,𝛾 (⋅) is the non-negative penalty function with a tuning parameter 𝜆 and a regularization parameter 𝛾 , and two
parameters 𝜆1 and 𝜆2 are adopted for 𝜇i’s and 𝛽j’s, respectively. In our study, we examine the proposed approach using the
well-known SCAD and MCP penalties, with

P𝜆,𝛾 (x) = 𝜆
∫

x

0
min

{

1,
(𝛾 − t∕𝜆)+
(𝛾 − 1)

}

dt, x > 0, 𝛾 > 2,
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for SCAD and

P𝜆,𝛾 (x) = 𝜆
∫

x

0

(

1 − t
𝜆𝛾

)

+
dt, x > 0, 𝛾 > 1,

for MCP, where the parameter 𝛾 controls the concavity of the penalty functions. In our study, we set 𝛾 = 3.7 for SCAD
and 3.0 for MCP, suggested by Fan et al and Breheny et al, respectively.16,17 The proposed estimates of 𝜇i’s and 𝛽j’s are
defined as the minimizer of (2). The subjects with the same values of 𝜇i belong to the same subgroup, and the nonzero
coefficients 𝛽j’s correspond to the important covariates that are associated with the response.

In (2), as opposed to the nonrobust least squares loss developed in Ma et al and He et al,10,18 we adopt a robust loss
function based on M-regression, which has satisfactory theoretical and numerical performance even in the presence
of heavy-tailed errors and outlier contamination. The proposed objective function is more general and includes L1 loss
function adopted in Zhang et al as a special example.13 The pairwise fusion penalty is imposed on the pairwise differences
|𝜇i − 𝜇j|’s to identify subject subgroups, where |𝜇i − 𝜇j|’s are shrunk toward zero. As such, the proposed approach can
partition subjects into multiple subgroups where subjects in each subgroup has the same values of 𝜇i. This strategy has the
advantage of automatically determining the number of subgroups, which is still a nontrivial task in heterogeneity analysis.
In addition, penalization technique is also adopted to accommodate high dimensionality of covariates and identify the
important covariates, which has not been well investigated in published studies, such as Ma et al and Zhang et al.10,13

We would like to point out that different from the work developed in He et al which models the heterogeneity based
on the observed covariates xi,18 we consider the heterogeneity resulting from unobserved latent factors after adjusting
for the effects of xi and its overall effect is represented in 𝜇i. Regarding the penalties, we adopt SCAD and MCP, which
have been popular and well-studied in the literature, and demonstrated to perform better theoretically and numerically
than some popular penalties, such as Lasso.

2.1 Computation

For optimizing the objective function (2), we propose adopting the ADMM algorithm, which has been widely used in
statistical learning and optimization problems, especially for large-scale data analysis. It changes a large optimization
problem into smaller ones and takes advantages of the augmented Lagrangian and coordinate descent methods. First we
rewrite the objective function (2) as

min 1
n

n∑

i=1
𝜌 (zi) +

∑

1≤i<j≤n
P𝜆1,𝛾

(
|sij|

)
+

p∑

j=1
P𝜆2,𝛾

(
|wj|

)

s.t. z = y − 𝝁 − X𝜷, s = D𝝁, w = 𝜷,

where X is the matrix composed of xi’s, y = (y1, … , yn)T , 𝝁 = (𝜇1, … , 𝜇n)T , and

D =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 0 · · · · · ·
1 0 −1 0 · · · · · ·
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 · · · · · · · · · 1 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

is the n(n−1)
2

× n pairwise difference matrix such that sij = 𝜇i − 𝜇j. The augmented Lagrangian form of this problem is then
given by

L
(
𝜷,𝝁, z, s,w,q1,q2,q3

)
= 1

n

n∑

i=1
𝜌 (zi) +

∑

1≤i<j≤n
P𝜆1

(
|sij|

)
+

p∑

j=1
P𝜆2

(
|wj|

)

+ r1

2
‖y − 𝝁 − X𝜷 − z‖2

2 +
r2

2
‖D𝝁 − s‖2

2 +
r3

2
‖𝜷 −w‖2

2

+ ⟨y − 𝝁 − X𝜷 − z,q1⟩ + ⟨D𝝁 − s,q2⟩ +
⟨
𝜷 −w,q3

⟩
, (3)

where r1, r2, and r3 are positive scalars, q1, q2 and q3 are multiplier vectors, ‖a‖2
2 = aTa, and ⟨a,b⟩ = aTb.
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We use an iterative algorithm to solve (3). Specifically, at each iteration optimize the objective function (3) with respect
to 𝜷,𝝁, z, s, and w sequentially while fixing the other parameters at their current estimates, and then update q1, q2, and q3
accordingly with r1, r2 and r3. Here, r’s (r1, r2, and r3) balance the penalty between violations of primal and dual feasibility
in ordinary ADMM algorithm.19 We set r = 1 + 1∕ (𝛾 − 1) for SCAD penalty and r = 1 + 1∕𝛾 for MCP to guarantee the
feasibility of the ADMM algorithm. The overall algorithm is summarized in Algorithm 1 of the Supporting Information,
and the detailed updating steps for various choices of loss functions and penalties are provided in Appendix A of the
Supporting Information. In addition, the convergence property of the proposed algorithm is also studied, where we show
that the proposed algorithm will converge to a stationary point under some mild conditions.

We further develop a parallel computing strategy for the ADMM algorithm to boost up the computational speed.
Specifically, since z, s, and w are updated elementwisely, these steps can be naturally realized in a parallel manner. In
addition, the most of the updating of 𝜷 and 𝝁 consists of matrix multiplications, which can also benefit from parallel
computing significantly for a large-scale data, as their computation complexity grows exponentially with n. In Figure S1
of the Supporting Information, we examine the speed of the single-thread vsingle and its parallel version vparrallel of the
proposed algorithm. Specifically, we consider the sample size n from 250 to 10 000 and the covariate size p = n∕2 with
other parameters given and fixed, and provide the speed ratio rv = vparrallel∕vsingle for the overall solver, updating of 𝝁, and
updating of s, respectively. These analyses are conducted on an eight core laptop. It is observed that when the sample
size is small, the overhead of creating and managing multiple threads outweights the benefit. However as the sample size
grows, the updating of 𝝁 and s gets nearly two and four times speed boost over the single-thread version of the algorithm,
respectively, and the speed boost for the overall solver is around 175%. The proposed parallel computing is much desirable
for the analysis with a large sample size. To facilitate data analysis and applications beyond this study, we have developed
an R package rsavs implementing the proposed parallel computing ADMM algorithm and made it publicly available at
https://fenguoerbian.github.io/RSAVS.

2.2 Selection of tuning parameters

We use a modified BIC to choose the tuning parameters 𝜆1 and 𝜆2, which is defined as

BIC(𝝁̂(𝝀), 𝜷̂(𝝀)) = log

(

1
n

n∑

i=1
𝜌

(
yi − 𝜇̂i(𝝀) − xT

i 𝜷̂(𝝀)
)
)

+ df(𝝀)𝜙n,

where 𝝀 = (𝜆1, 𝜆2), 𝜇̂i(𝝀), and 𝜷̂(𝝀) are the estimators of 𝜇i’s and 𝜷 by solving (2) given 𝝀, df(𝝀) = K̂(𝝀) + |𝜷̂(𝝀)|0 is the
degree of freedom of the model with K̂(𝝀) being the estimator of the number of subgroups based on 𝜇i(𝝀)’s, and 𝜙n is a
constant that can depend on the sample size n. We choose the tuning parameter combination 𝝀 = (𝜆1, 𝜆2) by minimizing
this modified BIC with the grid search. In our numerical studies, to speed up the tuning selection procedure and improve
the stability, we construct a decreasing sequence of 𝝀 values, and the estimates of the previous values of 𝝀 are used as the
warm start.

3 ASYMPTOTIC PROPERTIES

In this section, we consider the scenario where the number of covariates p can grow even faster than the sample size n,
and give the asymptotic properties of the proposed estimator.

First, denote G1, … ,GK as the subject index sets of the K subgroups and 𝜶 = (𝛼1, … , 𝛼K)T as the corresponding
heterogeneity effects. Then, we have 𝜇i = 𝛼k, if i ∈ Gk and model (1) can also be written as

yi = gT
i 𝜶 + xT

i 𝜷 + 𝜀i,

where gi’s are the K-dimensional indicator vectors with gik = 1 if i ∈ Gk and gik = 0 if i ∉ Gk, and G is the n × K matrix
composed of gi’s.

Let 𝜶0, g0
i ’s, and 𝜷0 be the true parameter values, K0 be the true number of the subject subgroups, and G0

1, … ,G0
K0

be the true subject index sets of the K0 subgroups. We assume the sparsity structure is present, which means only a

https://fenguoerbian.github.io/RSAVS
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small portion of the elements of 𝜷0 is non-zero. To simplify notations, we write 𝜷0 =
(
(𝜷0

A)T , 0T
p−q

)T , and accordingly, the

covariate vector is given as xi =
(

xT
i,A, x

T
i,I

)T
, where A and I refer to the true active and inactive sets of covariate indices

respectively.
When the true subgroup membership indicator matrix G0 and sparse structure A of 𝜷 are known, the oracle estimate

of coefficient
(

𝜶̃(G0)T , 𝜷̃T
)T

=
(

𝜶̃(G0)T ,
(

𝜷̃
T
A, 0T

p−q

)T
)T

is given by

(

𝜶̃(G0)T , 𝜷̃T
A

)T
= arg min

𝜶,𝜷A

1
n

n∑

i=1
𝜌

(

yi −
(

g0
i
)T
𝜶 − xT

i,A𝜷A

)

, (4)

which leads to the corresponding oracle estimates of subgroup treatment effects 𝝁̃ = (𝜇̃1, … , 𝜇̃n)T with 𝜇̃i = 𝛼̃k(G0) if i ∈
G0

k. Here, we put G0 in parenthese to indicate the dependence of 𝜶 on it. In Appendix B of the Supporting Information, we
introduce the assumptions, which are imposed on the size of the smallest signal, the characteristics of the predictor matrix,
and the orders of 𝜆1, 𝜆2, and p. Similar conditions have been considered in Ma et al, Wang et al, and some others.10,13,20

We refer to Appendix B of the Supporting Information for more detailed discussions.

Theorem 1. Under Assumptions A1–A5 given in the Supporting Information, if the following conditions hold,

max (𝜆1, 𝜆2) = o
(

n−(1−c2)∕2
)

,

√
q (K0 + q) = o

(√
n𝜆2

)

, (K0 + q) log n = o (n𝜆2) ,

n𝜆2
2 → ∞, log p = o

(
n𝜆2

2
)
, and

√
log n∕(n𝜆1 min{|G0

k|, k = 1, … ,K0}) = o (1) ,

then there exists a local minimizer
(

𝝁̂T
, 𝜷̂

T)T
of the objective function (2) coupled with either SCAD or MCP penalty such that

P
((

𝝁̂T
, 𝜷̂

T)T
=
(

𝝁̃T
, 𝜷̃

T
)T

)

→ 1

as n →∞, where
(

𝝁̃T
, 𝜷̃

T
)T

is the oracle estimate.

Proof is provided in Appendix B of the Supporting Information. Theorem 1 shows that the oracle estimate lies in the
set of local minimizers of the penalized objective function (2) with a high probability. In Appendix B of the Supporting
Information, we also show that the modified BIC provides asymptotic model selection consistency, that is, for any 𝝀 that
leads to the wrong model structure and 𝝀0 that identifies the true model, we have BIC

(
𝝁̂(𝝀), 𝜷̂(𝝀)

)
> BIC

(
𝝁̂(𝝀0), 𝜷̂(𝝀0)

)

with a high probability.

4 SIMULATION STUDIES

In this section we compare the performance of the proposed method with its competitors under different scenarios. Specif-
ically, the data are independently generated from model (1). Under different scenarios, we consider different combinations
of the sample size n, the number of covariates p, the number of true signals q, the vector of heterogeneity effects 𝝁,
the vector of covariate effects 𝜷, and the distribution of errors.

Throughout this simulation study, we examine two specific robust M-estimators based on L1 and Huber losses in (2),
respectively. Moreover, two alternatives are also analyzed. The first one is model (2) with the nonrobust L2 loss which
can hardly accommodate heavy-tailed errors and outliers. The second one is the RSI approach based on L1 loss,13 which
also has robustness property but conduct no variable selection procedures for high-dimensional covariates. For selecting
tuning parameters, we consider the modified BIC defined in (2.2) with 𝜙n = c log nloglog (n + p) ∕n, where c is set to be
5.0 for L1 loss following Zhang et al,13 and also 5.0 for Huber loss, and 10.0 for L2 loss as suggested by Ma et al10 For
Huber loss, the default value 𝜉 = 1.345 is utilized to control the robustness. To reduce computational cost, for the proposed
approach, we set the max number of iterations to be 50. In this article, we only report the results of these approaches
with the SCAD penalty, and the performance of those with the MCP penalty is quite similar and omitted to save the
space.



5454 CHENG et al.

For each scenario, 500 replicates are simulated and the following measures are adopted for evaluation. (a) MAE𝝁
and MAE𝜷 : the mean absolute errors for the heterogeneity and covariate effects, given by MAE𝝁 = 1

n

∑n
i=1 |𝜇̂i − 𝜇i| and

MAE𝜷 = 1
p

∑p
i=1

|
|
|
𝛽 i − 𝛽i

|
|
|
, respectively. The average values over 500 replicates are reported. (b) K and K̃: the average and

median values of the estimated number of subgroups over 500 replicates. (c) q: the average value of the estimated number
of active covariates over 500 replicates. (d) qTP: the average value of the number of identified true positives over 500
replicates. (e) RI: the average value of RI (Rand Index) over 500 replicates, which describes how close two grouping
results are. Specifically, for the subjects {x1, … , xn}, and the estimated and true subgroup memberships = {G1, … ,GK}
and 0 =

{

G0
1, … ,G0

K0

}

, RI is defined as RI
(
,0) = 2

n(n−1)
×
∑

1≤i<j≤n 𝛾ij, where 𝛾ij = 1 if xi and xj belong to the same
subgroup or different subgroups in both  and 0, and 𝛾ij = 0 otherwise. The RI value ranges from 0 to 1 with a larger
value indicating better clustering performance.

4.1 Subgroup analysis for low-dimensional cases

We first consider n = 200 or 400 and p = q = 5 to examine the feasibility of the proposed approach under the scenar-
ios with low dimensional covariates. Note that these low dimensional scenarios favor RSI since the variable selection is
not necessary. Specifically, consider K = 2 with centers {−1, 1} and K = 3 with centers {−2, 0, 2} to generate subgroups
respectively. The values of 𝜇i’s are independently generated from the multinomial distribution, with equal probability
at each group center. The covariates xi’s are independently generated from the standard normal distribution and the
corresponding coefficients are set to be 𝜷 = 15. Three settings for the errors 𝜀i’s are considered: (i) the standard nor-
mal distribution N

(
0, 0.52); (ii) 0.5 × t (5) with t (5) being the t-distribution with five degrees of freedom; (iii) Gaussian

mixture 0.95 ×N
(
0, 0.52) + 0.05 ×N

(
0, 52). We would like to note that under settings (ii) and (iii) with heavy-tailed

errors or outliers, approximately 2% to 10% of the data will be closer to other subgroup centers instead of its real
center.

The summary results under settings with errors drawn from 0.5 × t (5) are reported in Table 1 and the rest results
are summarized in Appendix C of the Supporting Information. We can observe that under settings with normally
distributed errors, all approaches perform well and comparably. When the errors are generated from the distribu-
tions with thick tails, the nonrobust approach with L2 loss is seriously affected by outliers, while L1 and Huber losses
provide much more robust results. Although penalization for covariates is not necessary under these scenarios, the
proposed approaches still behave competitively compared to RSI and can always identify the five active covariates
accurately.

Here, we also conduct analysis using the proposed approach with L1 loss and up to 1000 iterations in the ADMM
approximations (denoted as L1000

1 in Table 1). Although more iterations often lead to better results, the improvement is
relatively limited comparing to the one up to 50 iterations (denoted as L1 in Table 1). Thus, we conduct analysis with the
max number of iterations being 50 in the following numerical studies to reduce computational cost.

4.2 Subgroup analysis for high-dimensional cases

In this subsection, we consider n ∈ {200, 400}, p ∈ {50, 100, 500}, q = 5 and the covariate coefficient 𝜷 =
(

1T
5 , 0

T
p−5

)T
.

The generation mechanism for the covariates xi’s, subgroup intercepts 𝜇i’s, and errors are the same as those in
Section 4.1, where the errors with heavy-tails or outliers are considered. The summary results under settings with
errors generated from the distribution 0.5 × t (5) are summarized in Tables 1 and 2 (the results for RSI are not avail-
able when p = 500 since it is no longer feasible when p > n). The rest results are given in Appendix C of the Supporting
Information.

As demonstrated in Tables 1 and 2, the method with L2 loss performs poorly since it can hardly tolerate out-
liers, where it always miss the true subgroup structure and fails to recover the active covariates. The proposed
method with either L1 or Huber losses performs well, which can effectively identify both the subgroup structure and
the active covariates. In the high-dimensional cases, the performance of RSI decays significantly with the increas-
ing of the covariate dimension p due to the absence of an appropriate variable selection procedure. Under the
scenarios with n < p in Table 2, the proposed method with either L1 or Huber losses can still have satisfactory
performance.
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T A B L E 1 Simulation results under the scenarios with low dimensional covariates p = 5 and high dimensional covariates p = 50, q = 5,
and 0.5 × t (5) distributed error over 500 replicates

K Method MAE𝝁 MAE𝜷 K K̃ q qTP RI

n = 200, p = 5

2 L1 0.172 (0.044) 0.045 (0.017) 2.000 (0.000) 2 5.000 (0.000) 5.000 (0.000) 0.890 (0.031)

L2 0.473 (0.385) 0.056 (0.026) 1.944 (1.226) 2 5.000 (0.000) 5.000 (0.000) 0.748 (0.186)

Huber 0.169 (0.068) 0.044 (0.018) 1.996 (0.063) 2 5.000 (0.000) 5.000 (0.000) 0.890 (0.039)

RSI 0.179 (0.126) 0.069 (0.059) 2.010 (0.184) 2 5.000 (0.000) 5.000 (0.000) 0.891 (0.040)

L1000
1 0.193 (0.078) 0.049 (0.022) 2.156 (0.478) 2 5.000 (0.000) 5.000 (0.000) 0.877 (0.051)

3 L1 0.734 (0.155) 0.105 (0.042) 2.078 (0.283) 2 5.000 (0.000) 5.000 (0.000) 0.747 (0.049)

L2 0.738 (0.501) 0.087 (0.038) 3.504 (2.326) 3 5.000 (0.000) 5.000 (0.000) 0.672 (0.246)

Huber 0.332 (0.192) 0.075 (0.038) 3.038 (0.567) 3 5.000 (0.000) 5.000 (0.000) 0.868 (0.057)

RSI 0.400 (0.274) 0.106 (0.077) 2.746 (0.508) 3 5.000 (0.000) 5.000 (0.000) 0.853 (0.081)

L1000
1 0.323 (0.125) 0.080 (0.041) 3.420 (0.871) 3 5.000 (0.000) 5.000 (0.000) 0.866 (0.045)

n = 400, p = 5

2 L1 0.146 (0.029) 0.031 (0.011) 2.000 (0.000) 2 5.000 (0.000) 5.000 (0.000) 0.899 (0.019)

L2 0.365 (0.180) 0.041 (0.015) 4.916 (1.969) 6 5.000 (0.000) 5.000 (0.000) 0.752 (0.099)

Huber 0.146 (0.029) 0.030 (0.010) 2.000 (0.000) 2 5.000 (0.000) 5.000 (0.000) 0.898 (0.019)

RSI 0.179 (0.189) 0.061 (0.100) 2.122 (0.851) 2 5.000 (0.000) 5.000 (0.000) 0.889 (0.061)

L1000
1 0.157 (0.036) 0.033 (0.013) 2.110 (0.313) 2 5.000 (0.000) 5.000 (0.000) 0.890 (0.024)

3 L1 0.323 (0.236) 0.048 (0.027) 2.788 (0.409) 3 5.000 (0.000) 5.000 (0.000) 0.871 (0.073)

L2 0.427 (0.355) 0.054 (0.024) 4.482 (2.149) 3 5.000 (0.000) 5.000 (0.000) 0.806 (0.171)

Huber 0.219 (0.106) 0.042 (0.018) 3.002 (0.233) 3 5.000 (0.000) 5.000 (0.000) 0.901 (0.032)

RSI 0.302 (0.333) 0.103 (0.171) 3.080 (0.975) 3 5.000 (0.000) 5.000 (0.000) 0.885 (0.069)

L1000
1 0.597 (0.110) 0.067 (0.024) 3.056 (0.744) 3 5.000 (0.000) 5.000 (0.000) 0.772 (0.026)

n = 200 and p = 50

2 L1 0.220 (0.070) 0.006 (0.005) 2.000 (0.000) 2 4.990 (0.161) 4.990 (0.161) 0.850 (0.044)

L2 0.994 (0.014) 0.100 (0.000) 1.000 (0.000) 1 0.000 (0.000) 0.000 (0.000) 0.501 (0.000)

Huber 0.289 (0.236) 0.009 (0.008) 1.970 (0.371) 2 5.322 (0.805) 4.992 (0.126) 0.822 (0.115)

RSI 0.591 (0.181) 0.094 (0.025) 4.118 (2.561) 4 50.000 (0.000) 5.000 (0.000) 0.658 (0.092)

3 L1 0.812 (0.080) 0.018 (0.013) 2.000 (0.000) 2 4.788 (0.572) 4.768 (0.554) 0.722 (0.024)

L2 1.426 (0.038) 0.100 (0.000) 1.004 (0.063) 1 0.000 (0.000) 0.000 (0.000) 0.333 (0.004)

Huber 0.626 (0.278) 0.019 (0.016) 2.486 (0.520) 2 5.058 (1.112) 4.762 (0.728) 0.773 (0.083)

RSI 0.976 (0.152) 0.142 (0.032) 4.204 (2.363) 4 50.000 (0.000) 5.000 (0.000) 0.674 (0.030)

n = 400 and p = 50

2 L1 0.158 (0.034) 0.003 (0.001) 2.000 (0.000) 2 5.000 (0.000) 5.000 (0.000) 0.887 (0.024)

L2 1.000 (0.001) 0.008 (0.017) 1.000 (0.000) 1 4.840 (0.881) 4.840 (0.881) 0.499 (0.000)

Huber 0.169 (0.068) 0.004 (0.003) 2.020 (0.189) 2 5.006 (0.077) 5.000 (0.000) 0.881 (0.037)

RSI 0.519 (0.331) 0.079 (0.040) 4.146 (3.109) 2 50.000 (0.000) 5.000 (0.000) 0.728 (0.138)

3 L1 0.771 (0.024) 0.009 (0.003) 2.000 (0.000) 2 5.016 (0.126) 5.000 (0.000) 0.731 (0.005)

L2 1.405 (0.023) 0.100 (0.000) 1.002 (0.045) 1 0.000 (0.000) 0.000 (0.000) 0.333 (0.001)

Huber 0.349 (0.227) 0.008 (0.004) 2.820 (0.385) 3 5.544 (1.224) 5.000 (0.000) 0.857 (0.063)

RSI 1.090 (0.300) 0.137 (0.059) 4.986 (3.208) 3 50.000 (0.000) 5.000 (0.000) 0.687 (0.035)

Note: The standard errors are reported in parentheses for MAE𝝁, MAE𝜷 , K, q, qTP, and RI.
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T A B L E 2 Simulation results under the scenarios with high dimensional covariates p = 100 and p = 500, q = 5, and 0.5 × t (5)
distributed error over 500 replicates

K Method MAE𝝁 MAE𝜷 K K̃ q q̃TP RI

n = 200 and p = 100

2 L1 0.232 (0.066) 0.003 (0.002) 2.000 (0.000) 2 5.000 (0.063) 4.998 (0.045) 0.842 (0.044)

L2 0.994 (0.013) 0.050 (0.000) 1.000 (0.000) 1 0.000 (0.000) 0.000 (0.000) 0.501 (0.000)

Huber 0.371 (0.286) 0.005 (0.005) 1.922 (0.461) 2 5.418 (1.007) 4.798 (0.240) 0.779 (0.135)

RSI 0.893 (0.231) 0.123 (0.035) 6.398 (2.666) 6 100.000 (0.000) 5.000 (0.000) 0.535 (0.024)

3 L1 0.817 (0.084) 0.009 (0.007) 2.000 (0.000) 2 4.780 (0.670) 4.742 (0.629) 0.720 (0.026)

L2 1.425 (0.036) 0.050 (0.000) 1.004 (0.063) 1 0.000 (0.000) 0.000 (0.000) 0.333 (0.005)

Huber 0.720 (0.261) 0.011 (0.008) 2.314 (0.494) 2 4.844 (1.011) 4.688 (0.851) 0.742 (0.087)

RSI 1.325 (0.302) 0.186 (0.050) 6.470 (2.599) 7 100.000 (0.000) 5.000 (0.000) 0.610 (0.043)

n = 400 and p = 100

2 L1 0.161 (0.035) 0.002 (0.001) 2.000 (0.000) 2 5.000 (0.000) 5.000 (0.000) 0.883 (0.024)

L2 1.000 (0.001) 0.004 (0.010) 1.000 (0.000) 1 4.790 (1.004) 4.790 (1.004) 0.499 (0.000)

Huber 0.179 (0.076) 0.002 (0.001) 2.018 (0.133) 2 5.004 (0.063) 5.000 (0.000) 0.873 (0.037)

RSI 0.853 (0.349) 0.093 (0.041) 6.976 (2.929) 8 100.000 (0.000) 5.000 (0.000) 0.578 (0.079)

3 L1 0.772 (0.025) 0.004 (0.002) 2.000 (0.000) 2 5.036 (0.186) 5.000 (0.000) 0.731 (0.005)

L2 1.406 (0.026) 0.050 (0.000) 1.006 (0.100) 1 0.000 (0.000) 0.000 (0.000) 0.333 (0.004)

Huber 0.439 (0.273) 0.004 (0.002) 2.672 (0.470) 3 5.350 (0.981) 5.000 (0.000) 0.832 (0.075)

RSI 1.321 (0.512) 0.145 (0.059) 7.500 (2.651) 8.5 100.000 (0.000) 5.000 (0.000) 0.655 (0.025)

n = 200 and p = 500

2 L1 0.389 (0.304) 0.002 (0.003) 2.000 (0.000) 2 4.360 (1.375) 4.360 (1.375) 0.782 (0.105)

L2 0.995 (0.031) 0.010 (0.000) 1.010 (0.100) 1 0.000 (0.000) 0.000 (0.000) 0.501 (0.002)

Huber 0.585 (0.462) 0.003 (0.003) 2.140 (0.450) 2 4.290 (1.924) 4.050 (1.666) 0.732 (0.131)

3 L1 0.938 (0.140) 0.004 (0.003) 2.000 (0.000) 2 3.610 (1.456) 3.580 (1.408) 0.677 (0.049)

L2 1.425 (0.036) 0.010 (0.000) 1.000 (0.000) 1 0.000 (0.000) 0.000 (0.000) 0.333 (0.004)

Huber 0.925 (0.236) 0.005 (0.003) 2.300 (0.461) 2 3.410 (1.718) 3.380 (1.674) 0.687 (0.065)

n = 400 and p = 500

2 L1 0.175 (0.037) 0.003 (0.001) 2.000 (0.000) 2 5.000 (0.000) 5.000 (0.000) 0.875 (0.028)

L2 0.999 (0.001) 0.002 (0.004) 1.000 (0.000) 1 4.060 (1.953) 4.060 (1.953) 0.499 (0.000)

Huber 0.242 (0.162) 0.001 (0.001) 2.120 (0.409) 2 5.040 (0.243) 5.000 (0.000) 0.841 (0.071)

3 L1 0.776 (0.038) 0.001 (0.001) 2.000 (0.000) 2 4.960 (0.315) 4.960 (0.315) 0.729 (0.010)

L2 1.404 (0.021) 0.010 (0.000) 1.000 (0.000) 1 0.000 (0.000) 0.000 (0.000) 0.333 (0.000)

Huber 0.587 (0.274) 0.001 (0.001) 2.450 (0.500) 2 5.350 (0.968) 5.000 (0.000) 0.788 (0.075)

Note: The standard errors are reported in parentheses for MAE𝝁, MAE𝜷 , K, q, qTP, and RI.
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4.3 Subgroup analysis for relatively large-scale data

In this subsection, we further examine the performance of the proposed approach for analyzing large-scale data, which is
quite challenging as the algorithm has to deal with the heterogeneity effects for all pairwise subjects. Zhang et al pointed
out that the method RSI would have to take a divide-and-conquer strategy when n is large.13 At the dividing step, the
method RSI is performed on each batch of data. At the conquering step, another procedure RSI is performed on the unique
intercepts 𝜇̂i’s gathered from each batch. On the contrary, we conduct parallel computing which can potentially deal with
large-scale datasets and more importantly, is well ready for data stored in batches. In the following study, the batch size
is set to be 200.

We consider relatively large-scale datasets with n = 1000, p = 5 or p = 200, and q = 5. The covarites, covarite coeffi-
cients, individual intercepts, and errors are generated in the same manner as described in previous subsections, where the
errors with heavy-tails or outliers are considered. The results under the scenarios with the errors generated from the dis-
tribution 0.5 × t (5) are summarized in Table 3, and the rest results are given in Appendix C of the Supporting Information.
In general, the proposed robust approaches computationally implemented in a parallel manner can accommodate these
large-scale data effectively and have favorable subgroup and covariate identification performance, as well as satisfactory
estimation. L1 loss may give smaller estimates of the number of subgroups than that of Huber loss, while it is challeng-
ing for the method RSI coupled with divide-and-conquer strategy to identify the true subgroup structure although with
a larger enough batch size of the divide-and-conquer (270 in this numerical study). It is not surprising because the batch
size is still limited and the communications between batches are insufficient for the divide-and-conquer strategy, espe-
cially when the real number of subgroups is not small, which implies the divide-and-conquer strategy should be carefully
used in the subgroup analysis.

T A B L E 3 Simulation results under the scenarios with large sample size n = 1000, p = 5 and p = 200, q = 5, and 0.5 × t (5) distributed
error over 500 replicates

K Method MAE𝝁 MAE𝜷 K K̃ q qTP RI

n = 1000, p = 5

2 L1 0.129 (0.019) 0.019 (0.006) 2.000 (0.000) 2 5.000 (0.000) 5.000 (0.000) 0.901 (0.013)

L2 0.375 (0.046) 0.029 (0.009) 6.734 (0.660) 7 5.000 (0.000) 5.000 (0.000) 0.706 (0.031)

Huber 0.129 (0.018) 0.018 (0.006) 2.000 (0.000) 2 5.000 (0.000) 5.000 (0.000) 0.901 (0.013)

RSI 0.723 (0.376) 0.304 (0.181) 6.594 (2.761) 7 5.000 (0.000) 5.000 (0.000) 0.677 (0.090)

3 L1 0.177 (0.036) 0.021 (0.008) 2.990 (0.045) 3 5.000 (0.000) 5.000 (0.000) 0.911 (0.013)

L2 0.371 (0.057) 0.039 (0.014) 6.972 (0.368) 7 5.000 (0.000) 5.000 (0.000) 0.821 (0.026)

Huber 0.171 (0.022) 0.022 (0.008) 3.000 (0.000) 3 5.000 (0.000) 5.000 (0.000) 0.912 (0.010)

RSI 0.789 (0.338) 0.280 (0.172) 6.400 (2.444) 6 5.000 (0.000) 5.000 (0.000) 0.732 (0.056)

n = 1000, p = 200

2 L1 0.136 (0.019) 0.001 (0.000) 2.000 (0.000) 2 5.020 (0.141) 5.000 (0.000) 0.896 (0.013)

L2 1.000 (0.000) 0.001 (0.000) 1.000 (0.000) 1 5.000 (0.000) 5.000 (0.000) 0.500 (0.000)

Huber 0.141 (0.020) 0.001 (0.000) 2.000 (0.000) 2 5.000 (0.000) 5.000 (0.000) 0.891 (0.014)

RSI 1.002 (0.029) 0.075 (0.006) 8.590 (1.164) 8 200.000 (0.000) 5.000 (0.000) 0.502 (0.001)

3 L1 0.781 (0.016) 0.002 (0.001) 2.000 (0.000) 2 5.890 (1.145) 5.000 (0.000) 0.725 (0.003)

L2 1.366 (0.006) 0.001 (0.000) 1.000 (0.000) 1 5.000 (0.000) 5.000 (0.000) 0.333 (0.000)

Huber 0.213 (0.094) 0.001 (0.000) 2.980 (0.141) 3 5.180 (0.458) 5.000 (0.000) 0.895 (0.027)

RSI 1.391 (0.046) 0.113 (0.008) 10.810 (1.440) 11 200.000 (0.000) 5.000 (0.000) 0.467 (0.041)

Note: The standard errors are reported in parentheses for MAE𝝁, MAE𝜷 , K, q, qTP, and RI.
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5 DATA ANALYSIS

We analyze the BReast CAncer (BRCA) data from The Cancer Genome Atlas (TCGA), which is a hallmark genomics pro-
gram for cancer research. For high-dimensional covariates, we consider the mRNA gene expression data. Specifically, the
z-score data is analyzed and downloaded from TCGA via the R package cgdsr, which has been normalized against diploid
samples and quantifies the relative expressions of tumor samples with respect to normal.21 We consider the expression of
gene BRCA1 as the response since BRCA1 is a well-studied tumor suppressor for BRCA,22 and its mRNA expression level
has been demonstrated to be predictive for the breast cancer risk, and patients’ response/sensitivity to certain chemother-
apy treatment.23,24 The breast cancer heterogeneity attributed to the differential expressions of BRCA1 has been well
studied in the literature.25 Thus, it is of interest to model the associations of BRCA1 and other genes to further investigate
the heterogeneity of breast cancer, such as the various treatment effects among different patient subgroups. In our study,
after subject matching, 15 301 gene expression measurements are available for 1074 female patients. As the number of
cancer-related genes is expected to be not large, a marginal screening based on the linear regression (P < 0.01, with FDR
correction) is performed, resulting in 8571 genes for the downstream analysis.

We first take a close look at the distribution of BRCA1 expression in Figure 1A. It shows a skewed and heavy tail
pattern which indicates a robust method would be desired. In this analysis, we use Huber loss coupled with 𝜉 = 1.345,
and for both subgroup identification and variable selection, SCAD penalty function is considered. The proposed approach
identifies five subgroups, where the estimates of (group effect, group size) are (−1.010, 278), (−0.491, 243), (−0.021, 194),
(0.801, 242), and (2.384, 117), respectively. Under the assumption of the proposed method, it is expected that BRCA1
expressions of the whole subjects can be separated into several levels due to the underlying heterogeneity. Thus, to provide
an intuitionistic exhibition of the five subgroups, we plot the histogram of all subjects’ BRCA1 expressions in Figure 1B,
and for each interval, we visualize the number of subjects in each subgroup with the corresponding range of BRCA1
expression levels via the height of bar, where different subgroups are represented by different colors. The number of
subjects in each subgroup is also provided in the legend. As we can see, these five subgroups are relatively balanced with
each subgroup having a similar level of size and well separated in terms of BRCA1 expressions, where almost all bars are
represented by one color with subjects only from one subgroup.

To get a deeper insight into the identified subgroups, we examine whether these subgroups are associated with clin-
ical outcomes and important genetic characteristics. First, in Figure 2A, we present the Kaplan-Meier (KM) curves of
survival time for these five subgroups. Some differences across subgroups are observed with the P-value computed from
the log-rank test being 0.091. Moreover, we can see that the overall survival outcome of the patients gets worse as the
BRCA1 mRNA expression increases and the 5th subgroup, which has the highest BRCA1 expression, experiences much
worse overall survival time than the other groups. We further study the tumor size distribution of these subgroups in
Figure 2B, where the tumor size is coded into binary variables with tumor size less than 2cm (T0, T1) being coded as
“small” and otherwise (T2—T4) being coded as “big”. Interestingly, the proportion of big tumor is increasing in these sub-
groups and the p-value of the 𝜒2-test for the tumor size distribution is 0.079, indicating certain differences across these
subgroups. In addition, we also compare the subgroups identified by the proposed method with Prediction Analysis of
Microarray 50 (PAM50) subtypes, which are well-known breast cancer subtypes based on gene expression arrays, referred
to as Luminal-A, Luminal-B, Her2-positive, Basel-like, and Normal breast-like.26 Among these subtypes, many results in
the literature have shown that patients with Luminal-A breast cancer have a better prognosis than ones with the other
subtypes.27 We compute the PAM50 results using the R package genefu28 and show the composition of PAM50 subtypes
in each subgroup identified by the proposed method in Figure 2C. It is interesting that the proportion of patients with
Luminal-A breast cancer declines while the proportion of patients with Luminal-B breast cancer increases from subgroup
one to five. The P-value of the 𝜒2-test for the PAM50 distribution among different subgroups is less than 10−15, indicat-
ing apparently different composition among these subgroups. These biologically sensible findings provide support to the
validity of the proposed subgroup analysis.

In addition, twelve genes are selected by our model and their estimated effects are summarized in Figure 3A. Literature
search suggests the biological implications of these identified genes. For example, there have been many works showing
that ID4 is a down regulator of BRCA1 in breast cancer.29,30 The upregulation of ADAM9 has been suggested to contribute
to the aggressiveness of triple-negative breast cancer.31 In addition, Zhang et al has found that overexpression of NKAPL
in cancers can induce cell death and cell cycle arrest, and it is a potential diagnostic and prognostic marker in triple
negative breast cancer.32 ZNHIT6/BCD1 has been referred to encoding a proto-oncogene.33 Published studies have also
demonstrated that USP32 is involved in the proliferation of tumor cells in breast cancer.34 LAPTM4B has been shown to be
amplified in breast cancer compared with normal tissues, which contributes to chemotherapy resistance and recurrence
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F I G U R E 3 Analysis of BRCA data: estimated effects of the genes chosen by the proposed approach. (A) Original estimated effects. (B)
Re-estimated effects with the post-selection strategy and P-values computed from a wald test
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of breast cancer.35 We further examine the statistical significance of the selected genes using a post-selection strategy.
Specifically, we first refit the model (1) with pre-identified five subgroup structures and twelve important genes using
Huber loss, in a similar manner as that of Belloni and Chernozhukov,36 and then perform a Wald test37 based on the
refitted model to examine the statistical significance of the re-estimated coefficients. The P-values of twelve genes as
well as their re-estimated effects are provided in Figure 3B. It can be seen that five of them are significantly non-zero at
significant level 0.05.

We also conduct analysis using the nonrobust approach with L2 loss and RSI. For the method with L2 loss, since the
response is heavily skewed with a long tail, the estimated subgroups are extremely unbalanced and meaningless, where
1054 patients are classified as one main group while nine and eleven patients are categorized as other two small subgroups.
For RSI, we have to limit the covariates to the top 250 genes with the highest marginal correlations with BRCA1 since
RSI is not capable of performing variable selection. Due to the large size of this dataset, we apply the divide-and-conquer
strategy as suggested by Zhang et al and set the batch size to 270.13 RSI identifies two subgroups, one with 963 patients
and the other with 111 patients. The graphical representation is provided in Figure 1C. The identified subgroup structure
is observed to be not much meaningful, which is the consequence of insufficient communications among batches for the
divide-and-conquer strategy and absence of variable selection. To provide an indirect evaluation of these models, we fur-
ther compute the Mean Squared Error and Mean Absolute Error (MAE) with the predicted and true BRCA1 expressions,
which are given as 0.205 and 0.253 for the proposed robust method coupled with Huber loss, 0.532 and 0.525 for the non-
robust approach with L2 loss, and 0.267 and 0.282 for the RSI method, respectively. The proposed method is observed to
offer the best fitness to the data.

6 DISCUSSION

Cancer heterogeneity analysis is a still widely open problem with the complexity of cancer. In this study, we have proposed
a robust method for identifying cancer subgroups, which is built on and also advances from the existing heterogene-
ity analysis by effectively accommodating the heavy-tailed errors and outliers. Furthermore, our method can deal with
high-dimensional data which have been less touched in the current literature, and theoretical results have been well
established in this article. It also has an advantage of potentially dealing with large-scale data in subgroup analysis. An
approximation algorithm is carefully designed by adopting the spirit of the ADMM method, so its estimation procedure
can be implemented in a parallel or even distributed manner which is computationally efficient. Our simulation and data
analysis have demonstrated its satisfactory performance. In our data analysis, we have focused on the high dimensional
genetic factors. It will be of interest to include additional clinical, demographic, and other covariates.

In this study, we have modeled the heterogeneity by unobserved latent factors, following those of Ma and Huang,10

Chen et al,11 and other studies. This strategy has been popular and shown great success in recent biomedical heterogene-
ity studies. For example, Tzala and Best applied the Bayesian latent variable model to uncover the spatial and temporal
patterns of latent factors underlying the cancer data.38 Liu et al revealed the heterogeneity of Alzheimer’s disease progres-
sion through observed or unobserved latent covariates.39 The proposed method can be extended to the scenario where
the factors contributing to the heterogeneity are available. Some modifications for the estimation method and theoretical
properties are needed and deferred to further investigation. When the sample size is small or moderate, we can similarly
consider the local linear approximation in subgroup analysis of Zhang et al to improve its practical computing efficiency.13

However, for large-scale data, the divide-and-conquer strategy should be carefully used because sufficient communica-
tions among those data subsets are probably necessary to provide a meaningful clustering result. Furthermore, it is still
challenging to well identify true subgroup structures when there are too many real subgroups, which is intrinsically
difficult, and we leave this in the future research.

In data analysis, we have used the continuous expression of gene BRCA1 as an indirect marker which may reflect
the heterogeneity of breast cancer to some extents, as suggested in the literature. The proposed method can be extended
to accommodate categorical clinical markers, which may be more favorable for practical heterogeneity analysis, based
on generalized linear model. Unlike in simulation, the true underlying heterogeneity structure is not available in prac-
tical data analysis, thus it is difficult to objectively evaluate the accuracy of subgroup analysis. To provide an indirect
evaluation, we have studied the associations of the identified subgroups with survival time, tumor size, and PAM50 sub-
types. This indirect evaluation strategy has been popular in published heterogeneity analysis studies. For example, Cyll
et al40 investigated prostate cancer heterogeneity with DNA ploidy analysis, Gleason grading, and PTEN expression anal-
ysis, respectively, and studied the association of the identified tumor heterogeneity with tumor volume. In addition,
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Zhang et al41 identified three subgroups in pancreatic cancer samples with gene expressions and investigated the associ-
ations of theses subgroups with multiple clinical factors, including survival time and tumor diameter. We also note that
differences of the KM curves among subgroups are not statistically significant at the 0.05 level of significance. This phe-
nomenon has been not uncommon in published heterogeneity studies, such as Zhang et al41 for pancreatic cancers and Li
et al42 for glioblastoma multiforme, as subgroup identification procedures have been not tailored to the survival time, and
have been demonstrated to be still able to provide partial support to the heterogeneity analysis. In practical data analysis,
investigation on biological or clinical implications of subgroups is still challenging. We defer more definitive confirma-
tion from other functional validations to further studies. As high-dimensional inference is a nontrivial task, especially
under the proposed heterogeneity analysis framework with penalization, and still an open problem, we have conducted
a post-selection strategy to examine the statistical significance of the selected genes. We acknowledge that this strategy is
not rigorous, but can provide a rough insight into the significance of the selected genes. More rigorous inference will be
studied in the future work.
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